Chaos and dynamical complexity in the quantum to classical transition
Autor: | Dustin Anderson, Arie Kapulkin, Moses Z. R. Misplon, Walter Lynn, Bibek Pokharel, Arjendu K. Pattanayak, Peter Duggins, Kevin Hallman |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Physics
Multidisciplinary lcsh:R Chaotic Hilbert space lcsh:Medicine Lyapunov exponent 01 natural sciences Classical limit Article 010305 fluids & plasmas Nonlinear Sciences::Chaotic Dynamics symbols.namesake 0103 physical sciences Attractor symbols Quantum system lcsh:Q Statistical physics Planck 010306 general physics lcsh:Science Quantum |
Zdroj: | Scientific Reports, Vol 8, Iss 1, Pp 1-10 (2018) Scientific Reports |
ISSN: | 2045-2322 |
DOI: | 10.1038/s41598-018-20507-w |
Popis: | We study the largest Lyapunov exponents λ and dynamical complexity for an open quantum driven double-well oscillator, mapping its dependence on coupling to the environment Γ as well as effective Planck’s constant β2. We show that in general λ increases with effective Hilbert space size (as β decreases, or the system becomes larger and closer to the classical limit). However, if the classical limit is regular, there is always a quantum system with λ greater than the classical λ, with several examples where the quantum system is chaotic even though the classical system is regular. While the quantum chaotic attractors are generally of the same family as the classical attractors, we also find quantum attractors with no classical counterpart. Contrary to the standard wisdom, the correspondence limit can thus be the most difficult to achieve for certain classically chaotic systems. These phenomena occur in experimentally accessible regimes. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |