WEAK CONVERGENCE TO DERIVATIVES OF FRACTIONAL BROWNIAN MOTION

Autor: Søren Johansen, Morten Ørregaard Nielsen
Rok vydání: 2022
Předmět:
Zdroj: Johansen, S & Nielsen, M Ø 2022, ' Weak convergence to derivatives of fractional Brownian motion ', Econometric Theory . https://doi.org/10.1017/S0266466622000639
Johansen, S & Nielsen, M Ø 2023, ' WEAK CONVERGENCE TO DERIVATIVES OF FRACTIONAL BROWNIAN MOTION ', Econometric Theory, pp. 1-16 . https://doi.org/10.1017/S0266466622000639
ISSN: 1469-4360
0266-4666
DOI: 10.1017/s0266466622000639
Popis: It is well known that, under suitable regularity conditions, the normalized fractional process with fractional parameter d converges weakly to fractional Brownian motion (fBm) for $d>\frac {1}{2}$ . We show that, for any nonnegative integer M, derivatives of order $m=0,1,\dots ,M$ of the normalized fractional process with respect to the fractional parameter d jointly converge weakly to the corresponding derivatives of fBm. As an illustration, we apply the results to the asymptotic distribution of the score vectors in the multifractional vector autoregressive model.
Databáze: OpenAIRE