Investigating spatial scan statistics for multivariate functional data
Autor: | Camille Frévent, Mohamed-Salem Ahmed, Sophie Dabo-Niang, Michaël Genin |
---|---|
Přispěvatelé: | MOdel for Data Analysis and Learning (MODAL), Laboratoire Paul Painlevé (LPP), Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Evaluation des technologies de santé et des pratiques médicales - ULR 2694 (METRICS), Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-École polytechnique universitaire de Lille (Polytech Lille), Dabo-Niang, Sophie |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Popis: | This paper introduces new scan statistics for multivariate functional data indexed in space. The new methods are derivated from a MANOVA test statistic for functional data, an adaptation of the Hotelling T2-test statistic, and a multivariate extension of the Wilcoxon rank-sum test statistic. In a simulation study, the latter two methods present very good performances and the adaptation of the functional MANOVA also shows good performances for a normal distribution. Our methods detect more accurate spatial clusters than an existing nonparametric functional scan statistic. Lastly we applied the methods on multivariate functional data to search for spatial clusters of abnormal daily concentrations of air pollutants in the north of France in May and June 2020. Comment: arXiv admin note: text overlap with arXiv:2011.03482 |
Databáze: | OpenAIRE |
Externí odkaz: |