A dynamic logic for learning theory

Autor: Alexandru Baltag, Ana Lucia Vargas Sandoval, Aybüke Özgün, Sonja Smets, Nina Gierasimczuk
Přispěvatelé: ILLC (FNWI), Quantum Matter and Quantum Information, Logic and Computation (ILLC, FNWI/FGw), ILLC (FNWI/FGw), Logic and Language (ILLC, FNWI/FGw), ILLC (FGw)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Journal of Logical and Algebraic Methods in Programming, 109:100485. Elsevier
Lecture Notes in Computer Science ISBN: 9783319735788
DALI@TABLEAUX
Dynamic Logic. New Trends and Applications: First International Workshop, DALI 2017, Brasilia, Brazil, September 23-24, 2017 : proceedings, 35-54
STARTPAGE=35;ENDPAGE=54;TITLE=Dynamic Logic. New Trends and Applications
ISSN: 0302-9743
2352-2208
DOI: 10.1007/978-3-319-73579-5_3
Popis: Building on previous work [4, 5] that bridged Formal Learning Theory and Dynamic Epistemic Logic in a topological setting, we introduce a Dynamic Logic for Learning Theory (DLLT), extending Subset Space Logics [9, 17] with dynamic observation modalities [o]φ, as well as with a learning operator L(o→) , which encodes the learner’s conjecture after observing a finite sequence of data o→. We completely axiomatise DLLT, study its expressivity and use it to characterise various notions of knowledge, belief, and learning.
Databáze: OpenAIRE