Degenerate cyclotomic Hecke algebras and higher level Heisenberg categorification

Autor: Marco Mackaay, Alistair Savage
Rok vydání: 2017
Předmět:
Zdroj: Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
DOI: 10.48550/arxiv.1705.03066
Popis: We associate a monoidal category $\mathcal{H}^\lambda$ to each dominant integral weight $\lambda$ of $\widehat{\mathfrak{sl}}_p$ or $\mathfrak{sl}_\infty$. These categories, defined in terms of planar diagrams, act naturally on categories of modules for the degenerate cyclotomic Hecke algebras associated to $\lambda$. We show that, in the $\mathfrak{sl}_\infty$ case, the level $d$ Heisenberg algebra embeds into the Grothendieck ring of $\mathcal{H}^\lambda$, where $d$ is the level of $\lambda$. The categories $\mathcal{H}^\lambda$ can be viewed as a graphical calculus describing induction and restriction functors between categories of modules for degenerate cyclotomic Hecke algebras, together with their natural transformations. As an application of this tool, we prove a new result concerning centralizers for degenerate cyclotomic Hecke algebras.
Comment: 35 pages; v2: published version
Databáze: OpenAIRE