Numerical solution of the homogeneous Neumann boundary value problem on domains with a thin layer of random thickness
Autor: | Bénédicte Puig, Isabelle Greff, Helmut Harbrecht, Marc Dambrine |
---|---|
Přispěvatelé: | Laboratoire de Mathématiques et de leurs Applications [Pau] (LMAP), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2017 |
Předmět: |
Physics and Astronomy (miscellaneous)
[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] 010103 numerical & computational mathematics Boundary layer thickness 01 natural sciences [MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] Neumann boundary condition Free boundary problem [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] Boundary value problem [MATH]Mathematics [math] 0101 mathematics Mathematics Numerical Analysis Applied Mathematics Mathematical analysis Mixed boundary condition Robin boundary condition Computer Science Applications [MATH.MATH-PR]Mathematics [math]/Probability [math.PR] 010101 applied mathematics Thin layer equation Computational Mathematics Modeling and Simulation Blasius boundary layer Cauchy boundary condition Random domain [MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] |
Zdroj: | Journal of Computational Physics Journal of Computational Physics, Elsevier, 2017, 330, pp.943--959. ⟨10.1016/j.jcp.2016.10.044⟩ |
ISSN: | 0021-9991 1090-2716 |
Popis: | ACL; International audience; The present article is dedicated to the numerical solution of homogeneous Neumann boundary value problems on domains with a thin layer of different conductivity and of random thickness. By changing the boundary condition, the boundary value problem given on the random domain can be transformed into a boundary value problem on a fixed domain. The randomness is then contained in the coefficients of the new boundary condition. This thin coating can be expressed by a random Ventcell boundary condition and yields a second order accurate solution in the scale parameter epsilon of the layer's thickness. With the help of the Karhunen-Loeve expansion, we transform this random boundary value problem into a deterministic, parametric one with a possibly high-dimensional parameter y. Based on the decay of the random fluctuations of the layer's thickness, we prove rates of decay of the derivatives of the random solution with respect to this parameter y which are robust in the scale parameter epsilon. Numerical results validate our theoretical findings. |
Databáze: | OpenAIRE |
Externí odkaz: |