Investigation Of Angstrom-Thick Aluminium Oxide Passivation Layers To Improve The Gate Lag Performance Of Gan Hemts
Autor: | Gokhan Kurt, Ekmel Ozbay, Turkan Gamze Ulusoy Ghobadi, Mustafa Kemal Öztürk, Gurur Salkim, Bayram Butun, Melisa Ekin Gulseren, Amir Ghobadi |
---|---|
Přispěvatelé: | Gülseren, Melisa Ekin, Kurt, Gökhan, Ulusoy Ghobadi, Türkan Gamze, Ghobadi, Amir, Salkım, Gurur, Öztürk, Mustafa, Bütün, Bayram, Ekmel, Ekmel |
Rok vydání: | 2019 |
Předmět: |
Dielectric
Materials science Polymers and Plastics Passivation High-electron-mobility transistor GaN Biomaterials chemistry.chemical_compound Atomic layer deposition Gate lag HEMT Leakage (electronics) business.industry Metals and Alloys Surfaces Coatings and Films Electronic Optical and Magnetic Materials Threshold voltage chemistry AlGaN Aluminium oxide Optoelectronics business Current density |
Zdroj: | Materials Research Express |
Popis: | In this paper, we report an angstrom-thick atomic layer deposited (ALD) aluminum oxide (Al2O3) dielectric passivation layer for an AlGaN/GaN high electron mobility transistor (HEMT). Our results show a 55% improvement in the gate lag performance of the design and a decrease by half in interface state density upon coating with two cycles of ALD Al2O3. DC characteristics such as current density, threshold voltage, and leakage currents were maintained. ALD Al2O3 passivation layers with thicknesses up to 10 nm were investigated. XPS analyses reveal that the first ALD cycles are sufficient to passivate GaN surface traps. This study demonstrates that efficient passivation can be achieved in atomic-scale with dimensions much thinner than commonly used bulk layers. |
Databáze: | OpenAIRE |
Externí odkaz: |