Deformations of product-quotient surfaces and reconstruction of Todorov surfaces via $\mathbb{Q}$-Gorenstein smoothing

Autor: Francesco Polizzi, Yongnam Lee
Rok vydání: 2012
Předmět:
Zdroj: Algebraic Geometry in East Asia — Taipei 2011, J. A. Chen, M. Chen, Y. Kawamata and J. Keum, eds. (Tokyo: Mathematical Society of Japan, 2015)
DOI: 10.48550/arxiv.1201.4925
Popis: We consider the deformation spaces of some singular product-quotient surfaces $X=(C_1 \times C_2)/G$, where the curves $C_i$ have genus 3 and the group $G$ is isomorphic to $\mathbb{Z}_4$. As a by-product, we give a new construction of Todorov surfaces with $p_g=1$, $q=0$ and $2\le K^2\le 8$ by using $\mathbb{Q}$-Gorenstein smoothings.
Comment: 21 pages, Minor changes are made. It will apper in Advanced Studies in Pure Mathematics (Proceeding of Algebraic Geometry in East Asia, Taipei)
Databáze: OpenAIRE