Clique-Based Separators for Geometric Intersection Graphs

Autor: Mark de Berg, Sándor Kisfaludi-Bak, Morteza Monemizadeh, Leonidas Theocharous
Přispěvatelé: Ahn, Hee-Kap, Sadakane, Kunihiko, Algorithms, EAISI Foundational
Rok vydání: 2021
Předmět:
Zdroj: 32nd International Symposium on Algorithms and Computation
Leibniz International Proceedings in Informatics
Leibniz International Proceedings in Informatics (LIPIcs), 212
32nd International Symposium on Algorithms and Computation (ISAAC 2021)
Algorithmica, 85(6), 1652-1678. Springer
ISSN: 0178-4617
DOI: 10.48550/arxiv.2109.09874
Popis: Let $F$ be a set of $n$ objects in the plane and let $G(F)$ be its intersection graph. A balanced clique-based separator of $G(F)$ is a set $S$ consisting of cliques whose removal partitions $G(F)$ into components of size at most $\delta n$, for some fixed constant $\delta
Comment: 23 pages, 8 figures
Databáze: OpenAIRE