Ge/SiGe superlattices for nanostructured thermoelectric modules
Autor: | Jacopo Frigerio, Daniel Chrastina, James P. Hague, Elisabeth Müller, Tanja Etzelstorfer, Stefano Cecchi, L. Ferre Llin, J. Stangl, Giovanni Isella, Douglas J. Paul, Antonio Samarelli |
---|---|
Rok vydání: | 2013 |
Předmět: |
Materials science
Phonon scattering business.industry Fermi level Metals and Alloys Surfaces and Interfaces Chemical vapor deposition Thermoelectric materials Surfaces Coatings and Films Electronic Optical and Magnetic Materials symbols.namesake Thermal conductivity Thermoelectric generator Thermoelectric effect Materials Chemistry symbols Figure of merit Optoelectronics business |
Zdroj: | Thin Solid Films. 543:153-156 |
ISSN: | 0040-6090 |
DOI: | 10.1016/j.tsf.2013.01.002 |
Popis: | Thermoelectrics are presently used in a number of applications for both turning heat into electricity and also for using electricity to produce cooling. Mature Si/SiGe and Ge/SiGe heteroepitaxial growth technology would allow highly efficient thermoelectric materials to be engineered, which would be compatible and integrable with complementary metal oxide silicon micropower circuits used in autonomous systems. A high thermoelectric figure of merit requires that electrical conductivity be maintained while thermal conductivity is reduced; thermoelectric figures of merit can be improved with respect to bulk thermoelectric materials by fabricating low-dimensional structures which enhance the density of states near the Fermi level and through phonon scattering at heterointerfaces. We have grown and characterized Ge-rich Ge/SiGe/Si superlattices for nanofabricated thermoelectric generators. Low-energy plasma-enhanced chemical vapor deposition has been used to obtain nanoscale-heterostructured material which is several microns thick. Crystal quality and strain control have been investigated by means of high resolution X-ray diffraction. High-resolution transmission electron microscopy images confirm the material and interface quality. Electrical conductivity has been characterized by the mobility spectrum technique. |
Databáze: | OpenAIRE |
Externí odkaz: |