Subdifferentiation of integral functionals
Autor: | Emmanuel Giner, Jean-Paul Penot |
---|---|
Přispěvatelé: | Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT), Laboratoire Jacques-Louis Lions (LJLL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Work (thermodynamics)
021103 operations research regularity 58Cxx General Mathematics Numerical analysis 46G05 010102 general mathematics Mathematical analysis 0211 other engineering and technologies Duality (optimization) 02 engineering and technology Subderivative 01 natural sciences Legendre function Applied mathematics 0101 mathematics [MATH]Mathematics [math] subdi¤erential Mathematics Subject Classi…cation 28C99 49J52 Software integrand Mathematics integral functional |
Popis: | We examine how the subdi¤erentials of nonconvex integral functionals can be deduced from the subdi¤erentials of the corresponding integrand or at least be estimated with the help of them. In fact, assuming some regularity properties of the integrands, we obtain exact expressions for the subdi¤erentials of the integral functionals. We draw some consequences in terms of duality for such integral functionals, extending in this way the early work of R.T. Rockafellar to the nonconvex case. |
Databáze: | OpenAIRE |
Externí odkaz: |