Avoiding Abelian powers in binary words with bounded Abelian complexity

Autor: Gwénaël Richomme, Julien Cassaigne, Luca Q. Zamboni, Kalle Saari
Přispěvatelé: Institut de mathématiques de Luminy (IML), Université de la Méditerranée - Aix-Marseille 2-Centre National de la Recherche Scientifique (CNRS), Université Paul-Valéry - Montpellier 3 (UPVM), Arithmétique informatique (ARITH), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Department of Mathematics, University of Turku, Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut Camille Jordan (ICJ), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2010
Předmět:
FOS: Computer and information sciences
Torsion subgroup
Discrete Mathematics (cs.DM)
[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]
Abelian complexity
Elementary abelian group
0102 computer and information sciences
68R15
[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]
01 natural sciences
Rank of an abelian group
Combinatorics
[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
Computer Science (miscellaneous)
FOS: Mathematics
Mathematics - Combinatorics
0101 mathematics
Abelian group
Hidden subgroup problem
Mathematics
Arithmetic of abelian varieties
Avoidability in words
010102 general mathematics
Computer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)
16. Peace & justice
Free abelian group
Abelian power
010201 computation theory & mathematics
MSC (2000): 68R15
Abelian category
Combinatorics (math.CO)
Computer Science::Formal Languages and Automata Theory
Computer Science - Discrete Mathematics
Zdroj: International Journal of Foundations of Computer Science
International Journal of Foundations of Computer Science, World Scientific Publishing, 2011, 22 (4), pp.905-920. ⟨10.1142/S0129054111008489⟩
International Journal of Foundations of Computer Science, 2011, 22 (4), pp.905-920. ⟨10.1142/S0129054111008489⟩
ISSN: 0129-0541
DOI: 10.1142/S0129054111008489⟩
Popis: The notion of Abelian complexity of infinite words was recently used by the three last authors to investigate various Abelian properties of words. In particular, using van der Waerden's theorem, they proved that if a word avoids Abelian $k$-powers for some integer $k$, then its Abelian complexity is unbounded. This suggests the following question: How frequently do Abelian $k$-powers occur in a word having bounded Abelian complexity? In particular, does every uniformly recurrent word having bounded Abelian complexity begin in an Abelian $k$-power? While this is true for various classes of uniformly recurrent words, including for example the class of all Sturmian words, in this paper we show the existence of uniformly recurrent binary words, having bounded Abelian complexity, which admit an infinite number of suffixes which do not begin in an Abelian square. We also show that the shift orbit closure of any infinite binary overlap-free word contains a word which avoids Abelian cubes in the beginning. We also consider the effect of morphisms on Abelian complexity and show that the morphic image of a word having bounded Abelian complexity has bounded Abelian complexity. Finally, we give an open problem on avoidability of Abelian squares in infinite binary words and show that it is equivalent to a well-known open problem of Pirillo-Varricchio and Halbeisen-Hungerb\"uhler.
Comment: 16 pages, submitted
Databáze: OpenAIRE