A new canonical induction formula for p-permutation modules
Autor: | Hatice Mutlu, Laurence Barker |
---|---|
Rok vydání: | 2019 |
Předmět: |
Normal subgroup
Finite group Ring (mathematics) 010102 general mathematics General Medicine Group algebra 01 natural sciences Combinatorics Mathematics::Group Theory Conjugacy class 0103 physical sciences FOS: Mathematics Projective module 010307 mathematical physics Representation Theory (math.RT) 0101 mathematics Indecomposable module Subquotient Mathematics - Representation Theory 20C20 Mathematics |
Zdroj: | Comptes Rendus Mathematique. 357:327-332 |
ISSN: | 1631-073X |
DOI: | 10.1016/j.crma.2019.04.004 |
Popis: | Applying Robert Boltje's theory of canonical induction, we give a restriction-preserving formula expressing any p-permutation module as a Z [ 1 / p ] -linear combination of modules induced and inflated from projective modules associated with subquotient groups. The underlying constructions include, for any given finite group, a ring with a Z -basis indexed by conjugacy classes of triples ( U , K , E ) where U is a subgroup, K is a p ′ -residue-free normal subgroup of U, and E is an indecomposable projective module of the group algebra of U / K . |
Databáze: | OpenAIRE |
Externí odkaz: |