Affinization of $q$-oscillator representations of $U_q(\mathfrak{gl}_n)$
Autor: | Jae-Hoon Kwon, Sin-Myung Lee |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Popis: | We introduce a category $\widehat{\mathcal{O}}_{\rm osc}$ of $q$-oscillator representations of the quantum affine algebra $U_q(\widehat{\mathfrak{gl}}_n)$. We show that $\widehat{\mathcal{O}}_{\rm osc}$ has a family of irreducible representations, which naturally corresponds to finite-dimensional irreducible representations of quantum affine algebra of untwisted affine type $A$. It is done by constructing a category of $q$-oscillator representations of the quantum affine superalgebra of type $A$, which interpolates these two family of irreducible representations. The category $\widehat{\mathcal{O}}_{\rm osc}$ can be viewed as a quantum affine analogue of the semisimple tensor category generated by unitarizable highest weight representations of $\mathfrak{gl}_{u+v}$ ($n=u+v$) appearing in the $(\mathfrak{gl}_{u+v},\mathfrak{gl}_\ell)$-duality on a bosonic Fock space. 42 pages, v3: Section 4.2 revised: the proof of Theorem 4.4 in v2 streamlined with newly added Lemma 4.4, together with minor corrections, v2: Abstract and Introduction revised, together with minor corrections |
Databáze: | OpenAIRE |
Externí odkaz: |