A novel multinuclear solid state NMR approach for the characterization of kidney stones
Autor: | César Leroy, Laure Bonhomme-Coury, Christel Gervais, Frederik Tielens, Florence Babonneau, Michel Daudon, Dominique Bazin, Emmanuel Letavernier, Danielle Laurencin, Dinu Iuga, John Vincent Hanna, Mark Edmund Smith, Christian Bonhomme |
---|---|
Přispěvatelé: | Spectroscopie, Modélisation, Interfaces pour L'Environnement et la Santé (LCMCP-SMiLES), Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), General Chemistry [Brussel] (ALGC), Vrije Universiteit Brussel [Bruxelles] (VUB), Des Maladies Rénales Rares aux Maladies Fréquentes, Remodelage et Réparation, Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU), Institut de Chimie Physique (ICP), Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Department of Physics, University of Warwick, University of Warwick [Coventry], Department of Chemistry [Southampton], University of Southampton, DFT calculations were performed using HPC resources from GENCI-IDRIS (Grant 097535), The UK 850 MHz solid-state NMR Facility used in this research was funded by EPSRC and BBSRC (contract reference PR140003), as well as the University of Warwick including via part funding through Birmingham Science City Advanced Materials 495 Projects 1 and 2 supported by Advantage West Midlands (AWM) and the European Regional Development Fund (ERDF), Collège de France (CdF (institution))-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Montpellier 2 - Sciences et Techniques (UM2)-Université Montpellier 1 (UM1)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
[SDV.IB]Life Sciences [q-bio]/Bioengineering
[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM] [SDV.MHEP.UN]Life Sciences [q-bio]/Human health and pathology/Urology and Nephrology [SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biomolecules [q-bio.BM] |
Zdroj: | Magnetic Resonance Magnetic Resonance, Groupement Ampere-Copernicus Publications, 2021, 2 (1), pp.1-13. ⟨10.5194/mr-2-1-2021⟩ Magnetic Resonance, Groupement Ampere-Copernicus Publications, In press, ⟨10.5194/mr-2021-38⟩ |
ISSN: | 2699-0016 |
DOI: | 10.5194/mr-2-1-2021⟩ |
Popis: | The spectroscopic study of pathological calcifications (including kidney stones) is extremely rich and helps to improve the understanding of the physical and chemical processes associated with their formation. While FTIR imaging and optical/electron microscopies are routine techniques in hospitals, there has been a dearth of solid state NMR studies introduced into this area of medical research, probably due to the scarcity of this analytical technique in hospital facilities. This work introduces effective multinuclear and multi-dimensional solid state NMR methodologies to study the complex chemical and structural properties characterising kidney stone composition. As a basis for comparison three hydrates (n = 1, 2 and 3) of calcium oxalate are examined along with nine representative kidney stones. The multinuclear MAS NMR approach adopted investigates the 1H, 13C, 31P and 43Ca nuclei, with the 1H and 13C MAS NMR data able to be readily deconvoluted into the constituent elements associated with the different oxalates and organics present. For the first time, the full interpretation of highly resolved 1H NMR spectra is presented for the three hydrates, based on structure and local dynamics. The corresponding 31P MAS NMR data indicates the presence of low-level inorganic phosphate species, however the complexity of these data make the precise identification of the phases difficult to assign. This work provides physicians, urologists and nephrologists with additional avenues of spectroscopic investigation to interrogate this complex medical dilemma that requires real multi technique approaches to generate effective outcomes. |
Databáze: | OpenAIRE |
Externí odkaz: |