Cohomology monoids of monoids with coefficients in semimodules II
Autor: | Alex Patchkoria |
---|---|
Rok vydání: | 2017 |
Předmět: |
Discrete mathematics
Monoid Pure mathematics Algebra and Number Theory Group extension Group (mathematics) 010102 general mathematics Syntactic monoid K-Theory and Homology (math.KT) Mathematics::Algebraic Topology 01 natural sciences Cohomology Mathematics::K-Theory and Homology Mathematics::Category Theory Mathematics - K-Theory and Homology 0103 physical sciences Semimodule FOS: Mathematics Equivariant cohomology 010307 mathematical physics 0101 mathematics Algebra over a field 18G99 16Y60 20M50 20E22 Mathematics |
Zdroj: | Semigroup Forum. 97:131-153 |
ISSN: | 1432-2137 0037-1912 |
DOI: | 10.1007/s00233-017-9900-7 |
Popis: | We relate the old and new cohomology monoids of an arbitrary monoid $M$ with coefficients in semimodules over $M$, introduced in the author's previous papers, to monoid and group extensions. More precisely, the old and new second cohomology monoids describe Schreier extensions of semimodules by monoids, and the new third cohomology monoid is related to a certain group extension problem. |
Databáze: | OpenAIRE |
Externí odkaz: |