Twisted classical Poincare algebras
Autor: | Jerzy Lukierski, Henri Ruegg, Anatol Nowicki, Valerij N. Tolstoy |
---|---|
Rok vydání: | 1994 |
Předmět: |
High Energy Physics - Theory
Physics Pure mathematics Subalgebra Structure (category theory) General Physics and Astronomy Statistical and Nonlinear Physics ddc:500.2 Interpretation (model theory) Homogeneous space Algebra over a field Abelian group Mathematical Physics and Mathematics Mathematical Physics |
Zdroj: | Journal of Physics. A, Mathematical and General, Vol. 27, No 7 (1994) pp. 2389-2399 |
ISSN: | 1361-6447 0305-4470 |
DOI: | 10.1088/0305-4470/27/7/018 |
Popis: | We consider the twisting of Hopf structure for classical enveloping algebra $U(\hat{g})$, where $\hat{g}$ is the inhomogenous rotations algebra, with explicite formulae given for $D=4$ Poincar\'{e} algebra $(\hat{g}={\cal P}_4).$ The comultiplications of twisted $U^F({\cal P}_4)$ are obtained by conjugating primitive classical coproducts by $F\in U(\hat{c})\otimes U(\hat{c}),$ where $\hat{c}$ denotes any Abelian subalgebra of ${\cal P}_4$, and the universal $R-$matrices for $U^F({\cal P}_4)$ are triangular. As an example we show that the quantum deformation of Poincar\'{e} algebra recently proposed by Chaichian and Demiczev is a twisted classical Poincar\'{e} algebra. The interpretation of twisted Poincar\'{e} algebra as describing relativistic symmetries with clustered 2-particle states is proposed. Comment: \Large \bf 19 pages, Bonn University preprint, November 1993 |
Databáze: | OpenAIRE |
Externí odkaz: |