Filter bank Kernel Learning for nonstationary signal classification

Autor: Maxime Sangnier, Jerome Gauthier, Alain Rakotomamonjy
Přispěvatelé: Laboratoire d'Informatique, du Traitement de l'Information et des Systèmes (LITIS), Université Le Havre Normandie (ULH), Normandie Université (NU)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA), Laboratoire Outils d'Analyse des Données (LOAD), Département Métrologie Instrumentation & Information (DM2I), Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Direction Générale de l’Armement, Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes (LITIS), Laboratoire d'analyse des données et d'intelligence des systèmes (LADIS), Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST)
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Graph kernel
Computer science
Filter banks
SVM
Feature extraction
Linear classifier
02 engineering and technology
010501 environmental sciences
01 natural sciences
Relevance vector machine
Time-frequency representations
[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing
[STAT.ML]Statistics [stat]/Machine Learning [stat.ML]
Polynomial kernel
Least squares support vector machine
0202 electrical engineering
electronic engineering
information engineering

Kernel adaptive filter
signal processing
0105 earth and related environmental sciences
Active filters
Multiple kernel learning
Support vector machines
Time frequency domain
business.industry
Automatic feature extraction
Nonstationary signals
020206 networking & telecommunications
Pattern recognition
Filter bank
Signal classification
artificial intelligence
Support vector machine
Optimization programs
Kernel method
machine learning
classification
Kernel embedding of distributions
[INFO.INFO-IR]Computer Science [cs]/Information Retrieval [cs.IR]
Radial basis function kernel
Multiple Kernel Learning
Artificial intelligence
Tree kernel
business
Algorithm
[STAT.ME]Statistics [stat]/Methodology [stat.ME]
Zdroj: IEEE Xplore
ICASSP 2013-IEEE International Conference on Acoustics, Speech and Signal Processing
ICASSP 2013-IEEE International Conference on Acoustics, Speech and Signal Processing, May 2013, Vancouver, BC, Canada. pp.3183-3187, ⟨10.1109/ICASSP.2013.6638245⟩
ICASSP
2013 IEEE International Conference on Acoustics, Speech and Signal Processing
2013 IEEE International Conference on Acoustics, Speech and Signal Processing, May 2013, Vancouver, BC, Canada. pp.3183-3187, ⟨10.1109/ICASSP.2013.6638245⟩
DOI: 10.1109/ICASSP.2013.6638245⟩
Popis: Conference of 2013 38th IEEE International Conference on Acoustics, Speech, and Signal Processing, (ICASSP 2013) ; Conference Date: 26 May 2013 Through 31 May 2013; Conference Code:101421; International audience; This paper addresses the problem of automatic feature extraction for signal classification. In order to handle non-stationarity, features are designed in the time-frequency domain using a Filter Bank as the mapping function, which enables an easy interpretation for practitioners. The strategy adopted is to jointly learn a Filter Bank with a Support Vector Machine by casting the optimization program as a Multiple Kernel Learning problem. This solves the program for a finite set of filters. Thus, in order to handle an infinite number of filters, a novel active constraint algorithm is proposed based on the latest breakthroughs. Our method has been tested on a toy dataset and compared to classical methods with competitive results.
Databáze: OpenAIRE