Mathieu–Zhao spaces of univariate polynomial rings with non-zero strong radical
Autor: | Simeon Nieman, Arno van den Essen |
---|---|
Rok vydání: | 2016 |
Předmět: |
Algebra and Topology
Algebra and Number Theory Mathematics::Number Theory Polynomial ring 010102 general mathematics Univariate Zero (complex analysis) 010103 numerical & computational mathematics 01 natural sciences Combinatorics Algebra en Topologie Physics::Chemical Physics 0101 mathematics Algebraically closed field Mathematics Monic polynomial |
Zdroj: | Journal of Pure and Applied Algebra, 220, 3300-3306 Journal of Pure and Applied Algebra, 220, 9, pp. 3300-3306 |
ISSN: | 0022-4049 |
DOI: | 10.1016/j.jpaa.2016.02.015 |
Popis: | We describe all Mathieu–Zhao spaces of the univariate polynomial ring k[t]k[t] (k an algebraically closed field of characteristic zero) which have a non-zero strong radical. |
Databáze: | OpenAIRE |
Externí odkaz: |