Numerical study of the plasma tearing instability on the resistive time scale

Autor: Claudia Negulescu, Maurizio Ottaviani, Fabrice Deluzet, Stefan Possanner
Přispěvatelé: Institut de Mathématiques de Toulouse UMR5219 (IMT), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), CEA Cadarache, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institute of Theoretical and Computational Physics, Graz University of Technology [Graz] (TU Graz), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: Journal of Computational Physics
Journal of Computational Physics, Elsevier, 2015, 280, pp.602-625
Journal of Computational Physics, 2015, 280, pp.602-625
ISSN: 0021-9991
1090-2716
Popis: In this work, a new numerical scheme for the reduced resistive MHD system (RMHD) is presented. Numerical simulations of RMHD are notoriously challenging because of the disparate time-scales, encompassing the Alfven wave period and the resistive diffusion time, and because of the formation of thin internal layers, especially in the nonlinear phase. The new scheme is specifically designed for the study of the long time scale dynamics with large time steps. The key difficulty, namely the singularity of the system matrix in the limit of an infinite time scale disparity, is overcome by techniques inspired by asymptotic preserving (AP) methods. The reformulated version of the fully-implicit RMHD scheme is based on a 'micro-macro' (MM) scheme with a stabilization term. The tearing mode evolution and the formation of a magnetic island are considered as a test case. The advantages of the MM scheme with respect to standard implicit and explicit schemes are demonstrated. Good agreement with known analytical results in the regime of nonlinear growth and saturation of the magnetic island are obtained.
Databáze: OpenAIRE