A conceptually improved TD-DFT approach for predicting the maximum absorption wavelength of cyanine dyes
Autor: | Kamel Meguellati, Sylvain Ladame, Martin Spichty |
---|---|
Přispěvatelé: | Institut de Science et d'ingénierie supramoléculaires (ISIS), Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS), Department of Chemical Engineering - University of Cambridge, University of Cambridge [UK] (CAM), Laboratoire de Biologie Moléculaire de la Cellule (LBMC), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2011 |
Předmět: |
linear scaling approach
General Chemical Engineering Analytical chemistry Quantum yield 010402 general chemistry 01 natural sciences Molecular physics chemistry.chemical_compound Ultraviolet visible spectroscopy zero-point vibrational energy 0103 physical sciences Cyanine Absorption (electromagnetic radiation) ComputingMilieux_MISCELLANEOUS 010304 chemical physics Chemistry Process Chemistry and Technology Time-dependent density functional theory Molar absorptivity 0104 chemical sciences [CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry time-dependent density functional theory Wavelength Density functional theory quantum chemical calculations empirical correction |
Zdroj: | Dyes and Pigments Dyes and Pigments, Elsevier, 2011, 90 (2), pp.114-118. ⟨10.1016/j.dyepig.2010.12.001⟩ |
ISSN: | 0143-7208 |
DOI: | 10.1016/j.dyepig.2010.12.001 |
Popis: | International audience; Cyanine dyes have found valuable applications in modern bioresearch because of their biocompatibility, high molar absorptivity and moderate fluorescence quantum yield. Of special value for sensing and labeling applications is the fact they can cover a very large spectral range (from blue to infra-red). To design and select the most appropriate dyes for a given application the computational prediction of the absorption wavelength (prior to the costly chemical synthesis) serves as a valuable guidance. However, predicting absorption and emission wavelengths of such compounds remains a challenging task. Herein, we report a fast and highly accurate computational approach which allows the prediction of the maximum absorption wavelength for a wide range of cyanine dyes, including symmetrical and unsymmetrical, trimethine and pentamethine cyanine dyes but also unusual imino-based analogues. In addition to the vertical excitation energy (calculated from time-dependent density functional theory), the approach makes use of a novel correction term that is based on the ground-state zero-point vibrational energy (ZPVE). The correction term is statistically significant (F-test), and it reduces the average error and maximal error of the prediction by a factor of two. We anticipate that the concept of including the ZPVE into the calculation of the maximum absorption wavelength can be used also for other families of dyes to improve their predictability. |
Databáze: | OpenAIRE |
Externí odkaz: |