Large amplitude free flexural vibrations of functionally graded graphene platelets reinforced porous composite curved beams using finite element based on trigonometric shear deformation theory

Autor: T. Ben Zineb, M. Ganapathi, B. Pradyumna, D. Aditya Narayan, Olivier Polit
Přispěvatelé: Vellore Institute of Technology (VIT), Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Arts et Métiers Sciences et Technologies, HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM), Laboratoire Energétique Mécanique Electromagnétisme (LEME), Université Paris Nanterre (UPN), IMPACT N4S, ANR-15-IDEX-0004,LUE,Isite LUE(2015), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Materials science
Rotary inertia
02 engineering and technology
[SPI.MECA.MSMECA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Materials and structures in mechanics [physics.class-ph]
[SPI.MECA.SOLID]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Solid mechanics [physics.class-ph]
Amplitude
Porous curved beam
Nonlinear frequency
0203 mechanical engineering
Finite element
Normal mode
[SPI.MECA.MEMA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph]
Graphene reinforcement
Nonlinear vibration
Boundary value problem
ComputingMilieux_MISCELLANEOUS
Applied Mathematics
Mechanical Engineering
Equations of motion
Mechanics
021001 nanoscience & nanotechnology
Finite element method
Vibration
020303 mechanical engineering & transports
Buckling
Mechanics of Materials
[SPI.MECA.STRU]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Structural mechanics [physics.class-ph]
0210 nano-technology
Beam (structure)
Zdroj: International Journal of Non-Linear Mechanics
International Journal of Non-Linear Mechanics, 2019, 116, pp.302-317. ⟨10.1016/j.ijnonlinmec.2019.07.010⟩
International Journal of Non-Linear Mechanics, Elsevier, 2019, 116, pp.302-317. ⟨10.1016/j.ijnonlinmec.2019.07.010⟩
ISSN: 0020-7462
DOI: 10.1016/j.ijnonlinmec.2019.07.010⟩
Popis: International audience; In this paper, the large amplitude free flexural vibration characteristics of fairly thick and thin functionally graded graphene platelets reinforced porous curved composite beams are investigated using finite element approach. The formulation includes the influence of shear deformation which is represented through trigonometric function and it accounts for in-plane and rotary inertia effects. The geometric non-linearity introducing von Karman’s assumptions is considered. The non-linear governing equations obtained based on Lagrange’s equations of motion are solved employing the direct iteration technique. The variation of non-linear frequency with amplitudes is brought out considering different parameters such as slenderness ratio of the beam, curved beam included angle, distribution pattern of porosity and graphene platelets, graphene platelet geometry and boundary conditions. The present study reveals the redistribution of vibrating mode shape at certain amplitude of vibration depending on geometric and material parameters of the curved composite beam. Also, the degree of hardening behaviour increases with the weight fraction and aspect ratio of graphene platelet. The rate of change of nonlinear behaviour depends on the level of amplitude of vibration, shallowness and slenderness ratio of the curved beam.
Databáze: OpenAIRE