Large amplitude free flexural vibrations of functionally graded graphene platelets reinforced porous composite curved beams using finite element based on trigonometric shear deformation theory
Autor: | T. Ben Zineb, M. Ganapathi, B. Pradyumna, D. Aditya Narayan, Olivier Polit |
---|---|
Přispěvatelé: | Vellore Institute of Technology (VIT), Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Arts et Métiers Sciences et Technologies, HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM), Laboratoire Energétique Mécanique Electromagnétisme (LEME), Université Paris Nanterre (UPN), IMPACT N4S, ANR-15-IDEX-0004,LUE,Isite LUE(2015), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Materials science
Rotary inertia 02 engineering and technology [SPI.MECA.MSMECA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Materials and structures in mechanics [physics.class-ph] [SPI.MECA.SOLID]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Solid mechanics [physics.class-ph] Amplitude Porous curved beam Nonlinear frequency 0203 mechanical engineering Finite element Normal mode [SPI.MECA.MEMA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph] Graphene reinforcement Nonlinear vibration Boundary value problem ComputingMilieux_MISCELLANEOUS Applied Mathematics Mechanical Engineering Equations of motion Mechanics 021001 nanoscience & nanotechnology Finite element method Vibration 020303 mechanical engineering & transports Buckling Mechanics of Materials [SPI.MECA.STRU]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Structural mechanics [physics.class-ph] 0210 nano-technology Beam (structure) |
Zdroj: | International Journal of Non-Linear Mechanics International Journal of Non-Linear Mechanics, 2019, 116, pp.302-317. ⟨10.1016/j.ijnonlinmec.2019.07.010⟩ International Journal of Non-Linear Mechanics, Elsevier, 2019, 116, pp.302-317. ⟨10.1016/j.ijnonlinmec.2019.07.010⟩ |
ISSN: | 0020-7462 |
DOI: | 10.1016/j.ijnonlinmec.2019.07.010⟩ |
Popis: | International audience; In this paper, the large amplitude free flexural vibration characteristics of fairly thick and thin functionally graded graphene platelets reinforced porous curved composite beams are investigated using finite element approach. The formulation includes the influence of shear deformation which is represented through trigonometric function and it accounts for in-plane and rotary inertia effects. The geometric non-linearity introducing von Karman’s assumptions is considered. The non-linear governing equations obtained based on Lagrange’s equations of motion are solved employing the direct iteration technique. The variation of non-linear frequency with amplitudes is brought out considering different parameters such as slenderness ratio of the beam, curved beam included angle, distribution pattern of porosity and graphene platelets, graphene platelet geometry and boundary conditions. The present study reveals the redistribution of vibrating mode shape at certain amplitude of vibration depending on geometric and material parameters of the curved composite beam. Also, the degree of hardening behaviour increases with the weight fraction and aspect ratio of graphene platelet. The rate of change of nonlinear behaviour depends on the level of amplitude of vibration, shallowness and slenderness ratio of the curved beam. |
Databáze: | OpenAIRE |
Externí odkaz: |