Deadly diving? Physiological and behavioural management of decompression stress in diving mammals

Autor: Antonio Fernández, Peter T. Madsen, W. Van Bonn, P. K. Weathersby, N. Aguilar de Soto, Andreas Fahlman, Sophie Dennison, Alf O. Brubakk, Peter H Kvadsheim, Teri Rowles, Darlene R. Ketten, Dorian S. Houser, Paul Jepson, Michael J. Weise, Peter L. Tyack, Neal W. Pollock, Terrie M. Williams, Michael J. Moore, Alexander M. Costidis, David S. Rotstein, Massimo Ferrigno, Daniel P. Costa, Michael M. Garner, J. R. Fitz-Clarke, Samantha E. Simmons, Sascha K. Hooker, Y. Bernaldo de Quirós, K. J. Falke
Rok vydání: 2011
Předmět:
Zdroj: Proceedings of the Royal Society of London. Biological Sciences
Hooker, S K, Fahlman, A, Moore, M J, Aguilar de Soto, N, Bernaldo de Quirós, Y, Brubakk, A O, Costa, D P, Costidis, A M, Dennison, S, Falke, K J, Fernandez, A, Ferrigno, M, Fitz-Clarke, J R, Garner, M M, Houser, D S, Jepson, P D, Ketten, D R, Kvadsheim, P H, Madsen, P P T, Pollock, N W, Rotstein, D S, Rowles, T K, Simmons, S E, Van Bonn, W, Weathersby, P K, Weise, M J, Williams, T M & Tyack, P L 2012, ' Deadly diving? Physiological and behavioural management of decompression stress in diving mammals ', Proceedings of the Royal Society B: Biological Sciences, vol. 279, no. 1731, pp. 1041-1050 . https://doi.org/10.1098/rspb.2011.2088
Proceedings of the Royal Society B: Biological Sciences
ISSN: 1471-2954
0962-8452
Popis: Decompression sickness (DCS; ‘the bends’) is a disease associated with gas uptake at pressure. The basic pathology and cause are relatively well known to human divers. Breath-hold diving marine mammals were thought to be relatively immune to DCS owing to multiple anatomical, physiological and behavioural adaptations that reduce nitrogen gas (N2) loading during dives. However, recent observations have shown that gas bubbles may form and tissue injury may occur in marine mammals under certain circumstances. Gas kinetic models based on measured time-depth profiles further suggest the potential occurrence of high blood and tissue N2 tensions. We review evidence for gas-bubble incidence in marine mammal tissues and discuss the theory behind gas loading and bubble formation. We suggest that diving mammals vary their physiological responses according to multiple stressors, and that the perspective on marine mammal diving physiology should change from simply minimizing N2 loading to management of the N2 load. This suggests several avenues for further study, ranging from the effects of gas bubbles at molecular, cellular and organ function levels, to comparative studies relating the presence/absence of gas bubbles to diving behaviour. Technological advances in imaging and remote instrumentation are likely to advance this field in coming years. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Databáze: OpenAIRE