The mechanics of corneal deformation and rupture for penetrating injury in the human eye
Autor: | Andrew Rau, Jorge A. Ochoa, Steven Nissman, Michael Baldwinson, Scott Lovald, John McNulty |
---|---|
Rok vydání: | 2018 |
Předmět: |
Adult
Intraocular pressure genetic structures 0206 medical engineering Perforation (oil well) Poison control 02 engineering and technology Eye injuries Cornea 03 medical and health sciences 0302 clinical medicine Cadaver Muscle attachment Humans Medicine Ocular Physiological Phenomena Intraocular Pressure Aged General Environmental Science business.industry Mechanics Middle Aged medicine.disease 020601 biomedical engineering Elasticity Eye Injuries Penetrating Tissue Donors eye diseases Sclera medicine.anatomical_structure 030221 ophthalmology & optometry General Earth and Planetary Sciences Stress Mechanical sense organs business Cadaveric spasm Orbit |
Zdroj: | Injury. 49:230-235 |
ISSN: | 0020-1383 |
DOI: | 10.1016/j.injury.2017.11.037 |
Popis: | Penetrating eye injuries are surgical emergencies with guarded visual prognosis. The purpose of the current study was to determine the force required to rupture the cornea with a penetrating object, and to study how this force is affected by the object geometry. Thirty-six human cadaveric eyes from donors of various ages were characterized for diameter, axial length, and pre-test intraocular pressure. In order to investigate the effects of specimen storage time on the tissue response, half of the specimens were tested within two weeks of donor expiration, and half of the specimens were stored at -4°C for 12-18 months. Indenters of three different diameters (1.0, 1.5, and 2.0mm) were lowered into the apex of the cornea until rupture. Resistance to displacement (stiffness), displacement at failure, and the force at failure were determined. Multi-variable regression analysis was used to determine associations of the input variables (indenter size, test speed, and tissue postmortem time) on the mechanics of the tissue response. Twenty-nine of the 36 specimens failed at the indenter location in the cornea, four failed at the limbus, and three failed in the sclera near sites of muscle attachment. The average force at failure caused by the 1.0mm, 1.5mm, and 2.0mm indenters increased from 30.5±5.5N to 40.5±8.3N to 58.2±14.5N, respectively (p |
Databáze: | OpenAIRE |
Externí odkaz: |