Complex hyperbolic geometry of the figure eight knot
Autor: | Elisha Falbel, Martin Deraux |
---|---|
Přispěvatelé: | Institut Fourier (IF), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut de Mathématiques de Jussieu (IMJ), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), OUtils de Résolution Algébriques pour la Géométrie et ses ApplicatioNs (OURAGAN), Inria Paris-Rocquencourt, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), ANR-11-BS01-0018,SGT,Structures Géometriques et Triangulations(2011), Institut Fourier (IF ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]) |
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: |
Pure mathematics
Hyperbolic geometry Holonomy geometric structures on $3$–manifolds 32V05 Figure-eight knot Geometric Topology (math.GT) Unipotent Mathematics::Geometric Topology Manifold complex hyperbolic geometry 57M50 Mathematics - Geometric Topology Mathematics::Group Theory spherical CR structures [MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT] FOS: Mathematics Geometry and Topology Mathematics::Differential Geometry Uniformization (set theory) Orbifold 22E40 Complement (set theory) Mathematics |
Zdroj: | Geometry and Topology Geometry and Topology, Mathematical Sciences Publishers, 2015, 19, pp.237-293. ⟨10.2140/gt.2015.19.237⟩ Geometry and Topology, 2015, 19, pp.237-293. ⟨10.2140/gt.2015.19.237⟩ Geom. Topol. 19, no. 1 (2015), 237-293 |
ISSN: | 1465-3060 1364-0380 |
DOI: | 10.2140/gt.2015.19.237⟩ |
Popis: | International audience; We show that the figure eight knot complement admits a uniformizable spherical CR structure, i.e. it occurs as the manifold at infinity of a complex hyperbolic orbifold. The uniformization is unique provided we require the peripheral subgroups to have unipotent holonomy. |
Databáze: | OpenAIRE |
Externí odkaz: |