Extinction conditions for isolated populations with Allee effect

Autor: Cristina Sans, Daniel Campos, Isaac Llopis, Vicenç Méndez
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya. SC-SIMBIO - Sistemes complexos. Simulació discreta de materials i de sistemes biològics
Jazyk: angličtina
Rok vydání: 2011
Předmět:
Statistics and Probability
Critical patch size
Population Dynamics
Population
Matemàtiques i estadística::Matemàtica aplicada a les ciències [Àrees temàtiques de la UPC]
Extinction
Biological

Bifurcation diagram
Models
Biological

Population density
Stability (probability)
General Biochemistry
Genetics and Molecular Biology

Allee effect
symbols.namesake
Statistics
Animals
Quantitative Biology::Populations and Evolution
Efecte Allee
Statistical physics
Extinction (Biology) -- Mathematical models
education
Ecosystem
Mathematics
Population Density
education.field_of_study
Extinction
General Immunology and Microbiology
Applied Mathematics
Numerical Analysis
Computer-Assisted

General Medicine
Modeling and Simulation
symbols
Extinció (Biologia) -- Models matemàtics
General Agricultural and Biological Sciences
Zdroj: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Recercat. Dipósit de la Recerca de Catalunya
instname
DOI: 10.1016/j.mbs.2011.04.005
Popis: One of the main ecological phenomenons is the Allee effect, in which a positive benefit from the presence of conspecifics arises. In this work we describe the dynamical behavior of a population with Allee effect in a finite domain that is surrounded by a completely hostile environment. Using spectral methods to rewrite the local density of habitants we are able to determine the critical patch size and the bifurcation diagram, hence characterizing the stability of possible solutions, for different ways to introduce the Allee effect in the reaction–diffusion equations.
Databáze: OpenAIRE