Trapping conformational states along ligand-binding dynamics of peptide deformylase: the impact of induced fit on enzyme catalysis

Autor: Sonia Fieulaine, Isabelle Artaud, Carmela Giglione, Michel Desmadril, Frédéric Dardel, Thierry Meinnel, Adrien Boularot
Přispěvatelé: Institut de biologie structurale (IBS - UMR 5075 ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut des sciences du végétal (ISV), Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques (LCBPT - UMR 8601), Université Paris Descartes - Paris 5 (UPD5)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de biochimie et biophysique moléculaire et cellulaire (IBBMC), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Institut de biologie structurale (IBS - UMR 5075), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS), Université Paris Descartes - Paris 5 (UPD5)-Centre National de la Recherche Scientifique (CNRS), Institut de biologie structurale ( IBS - UMR 5075 ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ) -Université Joseph Fourier - Grenoble 1 ( UJF ), Institut des sciences du végétal ( ISV ), Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques ( LCBPT - UMR 8601 ), Université Paris Descartes - Paris 5 ( UPD5 ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de biochimie et biophysique moléculaire et cellulaire ( IBBMC ), Université Paris-Sud - Paris 11 ( UP11 ) -Centre National de la Recherche Scientifique ( CNRS )
Jazyk: angličtina
Rok vydání: 2011
Předmět:
Models
Molecular

MESH: Amidohydrolases
MESH: Hydroxamic Acids
[ SDV.BV ] Life Sciences [q-bio]/Vegetal Biology
Amino Acid Motifs
Arabidopsis
MESH: Catalytic Domain
Crystallography
X-Ray

Hydroxamic Acids
Biochemistry
MESH : Arabidopsis Proteins
Peptide deformylase
MESH: Amino Acid Motifs
MESH : Arabidopsis
Catalytic Domain
MESH: Arabidopsis
Enzyme Inhibitors
Biology (General)
0303 health sciences
MESH: Kinetics
General Neuroscience
030302 biochemistry & molecular biology
MESH : Catalytic Domain
MESH : Protein Binding
Enzyme structure
MESH : Mutagenesis
Site-Directed

Enzymes
MESH: Mutagenesis
Site-Directed

MESH : Amidohydrolases
MESH: Enzyme Inhibitors
Thermodynamics
MESH : Kinetics
MESH: Thermodynamics
General Agricultural and Biological Sciences
MESH: Models
Molecular

Protein Binding
Research Article
MESH : Amino Acid Motifs
MESH : Models
Molecular

QH301-705.5
Mutation
Missense

MESH: Arabidopsis Proteins
Biology
Protein Chemistry
General Biochemistry
Genetics and Molecular Biology

Enzyme catalysis
Amidohydrolases
03 medical and health sciences
Molecular recognition
Hydrolase
MESH : Hydrogen Bonding
MESH: Protein Binding
[SDV.BV]Life Sciences [q-bio]/Vegetal Biology
Enzyme kinetics
MESH: Hydrogen Bonding
030304 developmental biology
MESH : Thermodynamics
Enzyme Kinetics
MESH : Enzyme Inhibitors
MESH: Mutation
Missense

MESH : Hydroxamic Acids
General Immunology and Microbiology
Arabidopsis Proteins
Substrate (chemistry)
Active site
Proteins
Hydrogen Bonding
MESH: Crystallography
X-Ray

Kinetics
Small Molecules
Enzyme Structure
biology.protein
Biophysics
Mutagenesis
Site-Directed

Biocatalysis
MESH : Crystallography
X-Ray

MESH : Mutation
Missense
Zdroj: PLoS Biology
PLoS Biology, 2011, 9 (5), pp.e1001066. ⟨10.1371/journal.pbio.1001066⟩
PLoS Biology, Vol 9, Iss 5, p e1001066 (2011)
PLoS Biology, Public Library of Science, 2011, 9 (5), pp.e1001066. ⟨10.1371/journal.pbio.1001066⟩
PLoS Biology, Public Library of Science, 2011, 9 (5), pp.e1001066. 〈10.1371/journal.pbio.1001066〉
ISSN: 1544-9173
1545-7885
DOI: 10.1371/journal.pbio.1001066⟩
Popis: For several decades, molecular recognition has been considered one of the most fundamental processes in biochemistry. For enzymes, substrate binding is often coupled to conformational changes that alter the local environment of the active site to align the reactive groups for efficient catalysis and to reach the transition state. Adaptive substrate recognition is a well-known concept; however, it has been poorly characterized at a structural level because of its dynamic nature. Here, we provide a detailed mechanism for an induced-fit process at atomic resolution. We take advantage of a slow, tight binding inhibitor-enzyme system, actinonin-peptide deformylase. Crystal structures of the initial open state and final closed state were solved, as well as those of several intermediate mimics captured during the process. Ligand-induced reshaping of a hydrophobic pocket drives closure of the active site, which is finally “zipped up” by additional binding interactions. Together with biochemical analyses, these data allow a coherent reconstruction of the sequence of events leading from the encounter complex to the key-lock binding state of the enzyme. A “movie” that reconstructs this entire process can be further extrapolated to catalysis.
Author Summary The notion of induced fit when a protein binds its ligand—like a glove adapting to the shape of a hand—is a central concept of structural biochemistry introduced over 50 years ago. A detailed molecular demonstration of this phenomenon has eluded biochemists, however, largely due to the difficulty of capturing the steps of this very transient process: the “conformational change.” In this study, we were able to see this process by using X-ray diffraction to determine more than 10 distinct structures adopted by a single enzyme when it binds a ligand. To do this, we took advantage of the “slow, tight-binding” of a potent inhibitor to its specific target enzyme to trap intermediates in the binding process, which allowed us to monitor the action of an enzyme in real-time at atomic resolution. We showed the kinetics of the conformational change from an initial open state, including the encounter complex, to the final closed state of the enzyme. From these data and other biochemical and biophysical analyses, we make a coherent causal reconstruction of the sequence of events leading to inhibition of the enzyme's activity. We also generated a movie that reconstructs the sequence of events during the encounter. Our data provide new insights into how enzymes achieve a catalytically competent conformation in which the reactive groups are brought into close proximity, resulting in catalysis.
Databáze: OpenAIRE