Mechanistic Insight into Reversible Core Structural Changes of Dinuclear μ-Hydroxoruthenium(II) Complexes with a 2,8-Di-2-pyridyl-1,9,10-anthyridine Backbone Prior to Water Oxidation Catalysis
Autor: | Tatsuto Yui, Kosuke Takahashi, Kenji Saito, Taisei Sato, Masayuki Yagi, Masanari Hirahara, Shunsuke Watabe, Yasushi Umemura, Sho Nagai |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | Inorganic Chemistry. 56:10235-10246 |
ISSN: | 1520-510X 0020-1669 |
DOI: | 10.1021/acs.inorgchem.7b00978 |
Popis: | proximal,proximal-(p,p)-[RuII2(tpy)2LXY]n+ (tpy = 2,2′;6′,2″-terpyridine, L = 5-phenyl-2,8-di-2-pyridyl-1,9,10-anthyridine, and X and Y = other coordination sites) yields the structurally and functionally unusual RuII(μ-OH)RuII core, which is capable of catalyzing water oxidation with key water insertion to the core (Inorg. Chem. 2015, 54, 7627). Herein, we studied a sequence of bridging-ligand substitution among p,p-[Ru2(tpy)2L(μ-Cl)]3+ (Ru2(μ-Cl)), p,p-[Ru2(tpy)2L(μ-OH)]3+ (Ru2(μ-OH)), p,p-[Ru2(tpy)2L(OH)(OH2)]3+ (Ru2(OH)(OH2)), and p,p-[Ru2(tpy)2L(OH)2]2+ (Ru2(OH)2) in aqueous solution. Ru2(μ-Cl) converted slowly (10–4 s–1) to Ru2(μ-OH), and further Ru2(μ-OH) converted very slowly (10–6 s–1) to Ru2(OH)(OH2) by the insertion of water to reach equilibrium at pH 8.5–12.3. On the basis of density functional theory (DFT) calculations, Ru2(OH)(OH2) was predicted to be thermodynamically stable by 13.3 kJ mol–1 in water compared to Ru2(μ-OH) because of the specially stabilized core structure by multiple hydrog... |
Databáze: | OpenAIRE |
Externí odkaz: |