Popis: |
We use optical tweezers to characterize the ability of Caffeine (Caf) to modulate the intercalation of drugs into the DNA double-helix at the single molecule level. When previously bound to the double-helix, Caf hinders ethidium bromide (EtBr) intercalation, decreasing its effective equilibrium binding constant with DNA. The dominant mechanism of such singular ability is a direct binding of Caf to the intercalating drugs in solution, which decreases the effective concentration of such compounds available to interact with DNA. When EtBr intercalation into the DNA double-helix occurs firstly, on the other hand, the measured cooperativity between Caf molecules interacting with DNA can be modulated, a feature also correlated to the Caf-EtBr interaction in solution. The results achieved here unveil many peculiarities about the details of such interactions at the molecular level and provide new insights on the use of Caf in therapeutic applications. |