Reconstitution of anaphase DNA bridge recognition and disjunction

Autor: Mauro Modesti, Anna H. Bizard, Qi Yao, Anna G Ferreté-Bonastre, Kata Sarlós, Ian D. Hickson, Julia A M Bakx, Andreas S. Biebricher, Gijs J.L. Wuite, Erwin J.G. Peterman, Manikandan Paramasivam
Přispěvatelé: Institut de génétique et microbiologie [Orsay] (IGM), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche en Cancérologie de Marseille (CRCM), Aix Marseille Université (AMU)-Institut Paoli-Calmettes, Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Physics of Living Systems, LaserLaB - Molecular Biophysics
Rok vydání: 2018
Předmět:
Zdroj: Sarlós, K, Biebricher, A S, Bizard, A H, Bakx, J A M, Ferreté-Bonastre, A G, Modesti, M, Paramasivam, M, Yao, Q, Peterman, E J G, Wuite, G J L & Hickson, I D 2018, ' Reconstitution of anaphase DNA bridge recognition and disjunction ', Nature Structural and Molecular Biology, vol. 25, no. 9, pp. 868-876 . https://doi.org/10.1038/s41594-018-0123-8
Nature Structural and Molecular Biology
Nature Structural and Molecular Biology, Nature Publishing Group, 2018, 25 (9), pp.868-876. ⟨10.1038/s41594-018-0123-8⟩
Nature Structural and Molecular Biology, 2018, 25 (9), pp.868-876. ⟨10.1038/s41594-018-0123-8⟩
Nature Structural and Molecular Biology, 25(9), 868-876. Nature Publishing Group
Nature Structural & Molecular Biology
ISSN: 1545-9985
1545-9993
DOI: 10.1038/s41594-018-0123-8
Popis: International audience; Faithful chromosome segregation requires that the sister chromatids be disjoined completely. Defective disjunction can lead to the persistence of histone-free threads of DNA known as ultra-fine bridges (UFBs) that connect the separating sister DNA molecules during anaphase. UFBs arise at specific genomic loci and can only be visualized by detection of associated proteins such as PICH, BLM, topoisomerase IIIα, and RPA. However, it remains unknown how these proteins work together to promote UFB processing. We used a combination of ensemble biochemistry and new single-molecule assays to reconstitute key steps of UFB recognition and processing by these human proteins in vitro. We discovered characteristic patterns of hierarchical recruitment and coordinated biochemical activities that were specific for DNA structures modeling UFBs arising at either centromeres or common fragile sites. Our results describe a mechanistic model for how unresolved DNA replication structures are processed by DNA-structure-specific binding factors in mitosis to prevent pathological chromosome nondisjunction.
Databáze: OpenAIRE