Collisions in shape memory alloys
Autor: | Michel Frémond, Michele Marino, Elisabetta Rocca |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
General Physics and Astronomy
02 engineering and technology Classification of discontinuities 01 natural sciences law.invention Mathematics - Analysis of PDEs law Phase (matter) FOS: Mathematics General Materials Science Hammer Uniqueness 0101 mathematics Physics numerical examples Applied Mathematics Mechanics Shape-memory alloy collisions 021001 nanoscience & nanotechnology SMA 010101 applied mathematics Volume (thermodynamics) Shape memory alloys existence and uniqueness result 0210 nano-technology Analysis of PDEs (math.AP) |
Zdroj: | GAMM-Mitteilungen 40 (2018): 157–183. doi:10.1002/gamm.201730002 info:cnr-pdr/source/autori:M. Frémond, M. Marino, and E. Rocca/titolo:Collisions in shape memory alloys/doi:10.1002%2Fgamm.201730002/rivista:GAMM-Mitteilungen/anno:2018/pagina_da:157/pagina_a:183/intervallo_pagine:157–183/volume:40 |
DOI: | 10.1002/gamm.201730002 |
Popis: | We present here a model for instantaneous collisions in a solid made of shape memory alloys (SMA) by means of a predictive theory which is based on the introduction not only of macroscopic velocities and temperature, but also of microscopic velocities responsible of the austenite-martensites phase changes. Assuming time discontinuities for velocities, volume fractions and temperature, and applying the principles of thermodynamics for non-smooth evolutions together with constitutive laws typical of SMA, we end up with a system of nonlinearly coupled elliptic equations for which we prove an existence and uniqueness result in the 2 and 3 D cases. Finally, we also present numerical results for a SMA 2D solid subject to an external percussion by an hammer stroke. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |