Moyal Bracket and Ehrenfest’s Theorem in Born–Jordan Quantization
Autor: | Maurice A. de Gosson, Franz Luef |
---|---|
Rok vydání: | 2019 |
Předmět: |
Physics and Astronomy (miscellaneous)
Quantization (signal processing) 010102 general mathematics Time evolution Astronomy and Astrophysics Statistical and Nonlinear Physics Ehrenfest’s theorem 01 natural sciences Moyal bracket Atomic and Molecular Physics and Optics Poisson bracket Nonlinear Sciences::Exactly Solvable and Integrable Systems Mathematics::Quantum Algebra 0103 physical sciences Born-Jordan quantization 0101 mathematics 010306 general physics Mathematics::Symplectic Geometry Mathematics Mathematical physics |
Zdroj: | Quantum Reports Volume 1 Issue 1 Pages 8-81 |
ISSN: | 2624-960X |
DOI: | 10.3390/quantum1010008 |
Popis: | The usual Poisson bracket { A , B } can be identified with the so-called Moyal bracket { A , B } M for larger classes of symbols than was previously thought, provided that one uses the Born&ndash Jordan quantization rule instead of the better known Weyl correspondence. We apply our results to a generalized version of Ehrenfest&rsquo s theorem on the time evolution of averages of operators. |
Databáze: | OpenAIRE |
Externí odkaz: |