Topology of the Random Fibonacci Tiling Space
Autor: | Franz Gähler, Eden Delight Miro |
---|---|
Rok vydání: | 2014 |
Předmět: |
Fibonacci number
Group (mathematics) General Topology (math.GN) General Physics and Astronomy Contrast (statistics) Substitution (algebra) Dynamical Systems (math.DS) Space (mathematics) Topology 37B10 37B50 52C23 55N05 FOS: Mathematics Finitely-generated abelian group Mathematics - Dynamical Systems Čech cohomology Topology (chemistry) Mathematics - General Topology Mathematics |
Zdroj: | Acta Physica Polonica A. 126:564-567 |
ISSN: | 1898-794X 0587-4246 |
DOI: | 10.12693/aphyspola.126.564 |
Popis: | We look at the topology of the tiling space of locally random Fibonacci substitution, which is defined as a -> ba with probability p, a -> ab with probability 1-p and b -> a for 0 < p < 1. We show that its Cech cohomology group is not finitely generated, in contrast to the case where random substitutions are applied globally. |
Databáze: | OpenAIRE |
Externí odkaz: |