Membrane-assisted growth of DNA origami nanostructure arrays
Autor: | Susanne Kempter, William M. Shih, Jonathan List, Yongzheng Xing, Daniel Schiffels, Wooli Bae, Friedrich C. Simmel, Tim Liedl, Samet Kocabey |
---|---|
Rok vydání: | 2015 |
Předmět: |
Nanostructure
Lipid Bilayers General Physics and Astronomy Nanotechnology 02 engineering and technology 010402 general chemistry 01 natural sciences Cell membrane DNA nanotechnology medicine DNA origami General Materials Science Lipid bilayer Base Sequence Oligonucleotide Chemistry Cell Membrane General Engineering Biological membrane DNA 021001 nanoscience & nanotechnology 0104 chemical sciences Nanostructures medicine.anatomical_structure Membrane Biophysics 0210 nano-technology |
Zdroj: | ResearcherID |
ISSN: | 1936-086X |
Popis: | Biological membranes fulfill many important tasks within living organisms. In addition to separating cellular volumes, membranes confine the space available to membrane-associated proteins to two dimensions (2D), which greatly increases their probability to interact with each other and assemble into multiprotein complexes. We here employed two DNA origami structures functionalized with cholesterol moieties as membrane anchors--a three-layered rectangular block and a Y-shaped DNA structure--to mimic membrane-assisted assembly into hierarchical superstructures on supported lipid bilayers and small unilamellar vesicles. As designed, the DNA constructs adhered to the lipid bilayers mediated by the cholesterol anchors and diffused freely in 2D with diffusion coefficients depending on their size and number of cholesterol modifications. Different sets of multimerization oligonucleotides added to bilayer-bound origami block structures induced the growth of either linear polymers or two-dimensional lattices on the membrane. Y-shaped DNA origami structures associated into triskelion homotrimers and further assembled into weakly ordered arrays of hexagons and pentagons, which resembled the geometry of clathrin-coated pits. Our results demonstrate the potential to realize artificial self-assembling systems that mimic the hierarchical formation of polyhedral lattices on cytoplasmic membranes. |
Databáze: | OpenAIRE |
Externí odkaz: |