About the conditioning of matrices in the p-version of the finite element method for second order elliptic problems
Autor: | Olivier Pourquier, Jean-François Maitre |
---|---|
Rok vydání: | 1995 |
Předmět: | |
Zdroj: | Journal of Computational and Applied Mathematics. 63(1-3):341-348 |
ISSN: | 0377-0427 |
DOI: | 10.1016/0377-0427(95)00062-3 |
Popis: | In the framework of adaptive methods, bases of hierarchical type are used in the p-version of the finite element method. We have studied the matrices corresponding to the most used basis, introduced by Babuska and Szabo, in the case of d-dimensional rectangular elements. For the internal nodes, we show that the condition number is O(p4(d−1)) (resp. O(p4d)) for the stiffness (resp. mass) matrix. Moreover, we show that the usual diagonal preconditioning divides the exponents by two. |
Databáze: | OpenAIRE |
Externí odkaz: |