Divided difference operators on polytopes
Autor: | Valentina Kiritchenko |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2013 |
Předmět: |
Pure mathematics
Gelfand–Zetlin polytope Schubert calculus Demazure character divided difference operator Polytope Construct (python library) Representation theory Mathematics - Algebraic Geometry Mathematics::Algebraic Geometry Mathematics::Quantum Algebra FOS: Mathematics Representation Theory (math.RT) Mathematics::Representation Theory Algebraic Geometry (math.AG) Mathematics - Representation Theory Mathematics |
Zdroj: | Schubert Calculus — Osaka 2012, H. Naruse, T. Ikeda, M. Masuda and T. Tanisaki, eds. (Tokyo: Mathematical Society of Japan, 2016) |
Popis: | We define convex-geometric counterparts of divided difference (or Demazure) operators from the Schubert calculus and representation theory. These operators are used to construct inductively polytopes that capture Demazure characters of representations of reductive groups. In particular, Gelfand-Zetlin polytopes and twisted cubes of Grossberg-Karshon are obtained in a uniform way. 20 pages, 5 figures |
Databáze: | OpenAIRE |
Externí odkaz: |