Prediction of Tomato Yield in Chinese-Style Solar Greenhouses Based on Wavelet Neural Networks and Genetic Algorithms
Autor: | Yin Yizhi, Tan Liu, Ruimin Xiao, Yonggang Wang |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Wavelet neural network
Artificial neural network Chinese-style solar greenhouse tomato yield prediction Greenhouse Information technology T58.5-58.64 Backpropagation wavelet neural network Root mean square backpropagation neural network Yield (chemistry) Genetic algorithm Statistics genetic algorithm Predictive modelling Information Systems Mathematics |
Zdroj: | Information Volume 12 Issue 8 Information, Vol 12, Iss 336, p 336 (2021) |
ISSN: | 2078-2489 |
DOI: | 10.3390/info12080336 |
Popis: | Yield prediction for tomatoes in greenhouses is an important basis for making production plans, and yield prediction accuracy directly affects economic benefits. To improve the prediction accuracy of tomato yield in Chinese-style solar greenhouses (CSGs), a wavelet neural network (WNN) model optimized by a genetic algorithm (GA-WNN) is applied. Eight variables are selected as input parameters and the tomato yield is the prediction output. The GA is adopted to optimize the initial weights, thresholds, and translation factors of the WNN. The experiment results show that the mean relative errors (MREs) of the GA-WNN model, WNN model, and backpropagation (BP) neural network model are 0.0067, 0.0104, and 0.0242, respectively. The results root mean square errors (RMSEs) are 1.725, 2.520, and 5.548, respectively. The EC values are 0.9960, 0.9935, and 0.9868, respectively. Therefore, the GA-WNN model has a higher prediction precision and a better fitting ability compared with the BP and the WNN prediction models. The research of this paper is useful from both theoretical and technical perspectives for quantitative tomato yield prediction in the CSGs. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |