Concept drift detection and adaptation for federated and continual learning

Autor: Fernando E. Casado, Marcos F. Criado, Roberto Iglesias, Senén Barro, Dylan Lema, Carlos V. Regueiro
Přispěvatelé: Universidade de Santiago de Compostela. Centro de Investigación en Tecnoloxías da Información, Universidade de Santiago de Compostela. Departamento de Electrónica e Computación
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Minerva: Repositorio Institucional de la Universidad de Santiago de Compostela
Universidad de Santiago de Compostela (USC)
RUC. Repositorio da Universidade da Coruña
instname
Minerva. Repositorio Institucional de la Universidad de Santiago de Compostela
Popis: [Abstract] Smart devices, such as smartphones, wearables, robots, and others, can collect vast amounts of data from their environment. This data is suitable for training machine learning models, which can significantly improve their behavior, and therefore, the user experience. Federated learning is a young and popular framework that allows multiple distributed devices to train deep learning models collaboratively while preserving data privacy. Nevertheless, this approach may not be optimal for scenarios where data distribution is non-identical among the participants or changes over time, causing what is known as concept drift. Little research has yet been done in this field, but this kind of situation is quite frequent in real life and poses new challenges to both continual and federated learning. Therefore, in this work, we present a new method, called Concept-Drift-Aware Federated Averaging (CDA-FedAvg). Our proposal is an extension of the most popular federated algorithm, Federated Averaging (FedAvg), enhancing it for continual adaptation under concept drift. We empirically demonstrate the weaknesses of regular FedAvg and prove that CDA-FedAvg outperforms it in this type of scenario. Xunta de Galicia; ED431G/01 Xunta de Galicia; ED431G/08 Xunta de Galicia; ED431C2018/29 Xunta de Galicia; ED431F2018/02 Esta investigación ha recibido apoyo financiero de la AEI/FEDER (UE) con número de subvención TIN2017-90135-R, así como de la Consellería de Cultura, Educación e Ordenación Universitaria de Galicia (acreditación 2016-2019, ED431G/01 y ED431G/08, grupo competitivo de referencia ED431C2018/29, y subvención ED431F2018/02), y del Fondo Europeo de Desarrollo Regional (FEDER). También ha sido apoyado por el Ministerio de Universidades de España en el programa FPU 2017 (FPU17/04154).
Databáze: OpenAIRE