Simulating particle organic matter dispersal beneath Atlantic salmon fish farms using different resuspension approaches
Autor: | Pål Næverlid Sævik, Marcos Antonio Carvajalino-Fernandez, Ingrid Askeland Johnsen, Nigel Keeley, J. Albretsen |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
0106 biological sciences
Salmo salar Fisheries Particle (ecology) Aquaculture 010501 environmental sciences Aquatic Science Lagrangian particle tracking Oceanography 01 natural sciences Fish Diseases Animals Organic matter Salmo 0105 earth and related environmental sciences chemistry.chemical_classification biology business.industry Norway 010604 marine biology & hydrobiology Sediment biology.organism_classification Pollution chemistry Benthic zone Erosion Environmental science business |
Zdroj: | Marine Pollution Bulletin |
Popis: | An accurate representation of the particle organic matter (POM) footprint is necessary in order to effectively predict impacts upon benthic communities and the risk of excessive organic enrichment beneath aquaculture sea-cages. Consequently, bottom-related processes such as particle resuspension must be adequately parametrized and evaluated in the available numerical models. We implemented two approaches to model POM resuspension in a Lagrangian particle tracking model and compared their influence on footprint extension and gradients of depositional flux against a no-resuspension scenario. We performed simulations in both exposed and protected aquaculture locations, and at different stages of the Atlantic Salmon (Salmo salar) production cycle in Norway. Our results indicate that the use of sediment-dependent thresholds for resuspension has the potential to regulate the high levels of erosion produced when selecting a low critical value in constant-threshold approaches, particularly in dynamic environments with mixed sediment types. publishedVersion |
Databáze: | OpenAIRE |
Externí odkaz: |