On resonances generated by conic diffraction

Autor: Jared Wunsch, Luc Hillairet
Přispěvatelé: Institut Denis Poisson (IDP), Centre National de la Recherche Scientifique (CNRS)-Université de Tours (UT)-Université d'Orléans (UO), Centre National de la Recherche Scientifique (CNRS)-Université de Tours-Université d'Orléans (UO)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Annales de l'Institut Fourier
Annales de l'Institut Fourier, Association des Annales de l'Institut Fourier, 2020, 70 (4), pp.1715-1752. ⟨10.5802/aif.3355⟩
ISSN: 0373-0956
1777-5310
DOI: 10.5802/aif.3355⟩
Popis: We describe the resonances closest to the real axis generated by diffraction of waves among cone points on a manifold with Euclidean ends. These resonances lie asymptotically evenly spaced along a curve of the form $$\frac{\Im \lambda}{\log \left |\Re \lambda\right |}= -\nu;$$ here $\nu=(n-1)/2 L_0$ where $n$ is the dimension and $L_0$ is the length of the longest geodesic connecting two cone points. Moreover there are asymptotically no resonances below this curve and above the curve $$ \frac{\Im \lambda}{\log \left |\Re \lambda\right |}= -\Lambda $$ for a fixed $\Lambda>\nu.$
Comment: Slight correction to main theorem: finitely many different values of the constants $C_\Re$ and $C_\Im$ may be possible if there is more than one maximal diffracted closed orbit. Final version to appear in Ann. Inst. Fourier
Databáze: OpenAIRE