Atomically resolved interfacial water structures on crystalline hydrophilic and hydrophobic surfaces
Autor: | Simone Benaglia, Ravindra Thakkar, Jeffrey Comer, Manuel R. Uhlig, Ricardo Garcia |
---|---|
Přispěvatelé: | European Research Council, Ministerio de Ciencia, Innovación y Universidades (España), European Commission, National Science Foundation (US), Ministerio de Economía y Competitividad (España), Uhlig, Manuel R., Benaglia, Simone, Comer, Jeffrey, García-García, Ricardo, Uhlig, Manuel R. [0000-0002-7313-7572], Benaglia, Simone [0000-0001-8997-0967], Comer, Jeffrey [0000-0003-4437-1260], García-García, Ricardo [0000-0002-7115-1928] |
Rok vydání: | 2021 |
Předmět: |
chemistry.chemical_classification
Materials science Hexagonal boron nitride 02 engineering and technology Bulk water 010402 general chemistry 021001 nanoscience & nanotechnology Crystalline hydrophilic 01 natural sciences 0104 chemical sciences Molecular dynamics Hydrocarbon Hydrophobic surfaces chemistry Chemical engineering Molecule General Materials Science Graphite Mica 0210 nano-technology |
Zdroj: | Digital.CSIC. Repositorio Institucional del CSIC instname |
Popis: | [EN] Hydration layers are formed on hydrophilic crystalline surfaces immersed in water. Their existence has also been predicted for hydrophobic surfaces, yet the experimental evidence is controversial. Using 3D-AFM imaging, we probed the interfacial water structure of hydrophobic and hydrophilic surfaces with atomic-scale spatial resolution. We demonstrate that the atomic-scale structure of interfacial water on crystalline surfaces presents two antagonistic arrangements. On mica, a common hydrophilic crystalline surface, the interface is characterized by the formation of 2 to 3 hydration layers separated by approximately 0.3 nm. On hydrophobic surfaces such as graphite or hexagonal boron nitride (h-BN), the interface is characterized by the formation of 2 to 4 layers separated by about 0.5 nm. The latter interlayer distance indicates that water molecules are expelled from the vicinity of the surface and replaced by hydrocarbon molecules. This creates a new 1.5-2 nm thick interface between the hydrophobic surface and the bulk water. Molecular dynamics simulations reproduced the experimental data and confirmed the above interfacial water structures. This journal is European Research Council ERC-AdG-340177, the Ministerio de Ciencia, Innovación y Universidades (PID2019- 106801GB-I00; MAT2016-76507-R) and European Commission Marie Sklodowska-Curie grant agreement No. 721874. J.C. acknowledges financial support by the US National Science Foundation under Grant No. CHE-1726332 and DMR-1945589. |
Databáze: | OpenAIRE |
Externí odkaz: |