Southern high-latitude terrestrial climate change during the Palaeocene–Eocene derived from a marine pollen record (ODP Site 1172, East Tasman Plateau)
Autor: | Contreras, L., Pross, J., Bijl, P.K., O'Hara, R.B., Raine, J.I., Sluijs, A., Brinkhuis, H., NWO-NNPP: Reconstructing the evolution and dynamics of the Antarctic cryosphere from Ocean Drilling, a dinoflagellate perspective, NWO-VENI: The Dawn of Greenhouse Earth: climate and carbon cycle dynamics of the Palaeocene, Marine palynology and palaeoceanography |
---|---|
Přispěvatelé: | NWO-NNPP: Reconstructing the evolution and dynamics of the Antarctic cryosphere from Ocean Drilling, a dinoflagellate perspective, NWO-VENI: The Dawn of Greenhouse Earth: climate and carbon cycle dynamics of the Palaeocene, Marine palynology and palaeoceanography |
Jazyk: | angličtina |
Rok vydání: | 2014 |
Předmět: |
Biogeochemical cycle
010504 meteorology & atmospheric sciences lcsh:Environmental protection Stratigraphy Climate change 010502 geochemistry & geophysics 01 natural sciences Latitude Paleontology lcsh:Environmental pollution ddc:550 lcsh:TD169-171.8 Ecosystem lcsh:Environmental sciences 0105 earth and related environmental sciences lcsh:GE1-350 Nothofagus Global and Planetary Change geography Plateau geography.geographical_feature_category biology TEX86 15. Life on land biology.organism_classification Oceanography 13. Climate action lcsh:TD172-193.5 Paleogene Geology |
Zdroj: | Climate of the Past, 10(4), 1401. European Geosciences Union Climate of the Past, Vol 10, Iss 4, Pp 1401-1420 (2014) |
ISSN: | 1814-9324 |
Popis: | Reconstructing the early Palaeogene climate dynamics of terrestrial settings in the high southern latitudes is important to assess the role of high-latitude physical and biogeochemical processes in the global climate system. However, whereas a number of high-quality Palaeogene climate records has become available for the marine realm of the high southern latitudes over the recent past, the long-term evolution of coeval terrestrial climates and ecosystems is yet poorly known. We here explore the climate and vegetation dynamics on Tasmania from the middle Palaeocene to the early Eocene (60.7–54.2 Ma) based on a sporomorph record from Ocean Drilling Program (ODP) Site 1172 on the East Tasman Plateau. Our results show that three distinctly different vegetation types thrived on Tasmania under a high-precipitation regime during the middle Palaeocene to early Eocene, with each type representing different temperature conditions: (i) warm-temperate forests dominated by gymnosperms that were dominant during the middle and late Palaeocene (excluding the middle/late Palaeocene transition); (ii) cool-temperate forests dominated by southern beech (Nothofagus) and araucarians that transiently prevailed across the middle/late Palaeocene transition interval (~ 59.5 to ~ 59.0 Ma); and (iii) paratropical forests rich in ferns that were established during and in the wake of the Palaeocene–Eocene Thermal Maximum (PETM). The transient establishment of cool-temperate forests lacking any frost-sensitive elements (i.e. palms and cycads) across the middle/late Palaeocene transition interval indicates markedly cooler conditions, with the occurrence of frosts in winter, on Tasmania during that time. The integration of our sporomorph data with previously published TEX86-based sea-surface temperatures from ODP Site 1172 documents that the vegetation dynamics on Tasmania were closely linked with the temperature evolution in the Tasman sector of the Southwest Pacific region. Moreover, the comparison of our season-specific climate estimates for the sporomorph assemblages from ODP Site 1172 with the TEX86L- and TEX86H-based temperature data suggests a warm bias of both calibrations for the early Palaeogene of the high southern latitudes. |
Databáze: | OpenAIRE |
Externí odkaz: |