Mucosal (SIgA) and serum (IgG) immunologic responses in young adults following intranasal administration of one or two doses of inactivated, trivalent anti-influenza vaccine

Autor: Avraham Morag, Zichria Zakay-Rones, Evgenia Greenbaum, Reuven Levy, Dan Engelhard, Miriam Schlezinger
Rok vydání: 2003
Předmět:
Zdroj: Vaccine. 22(20)
ISSN: 0264-410X
Popis: Influenza morbidity affects the entire population and has an enormous impact upon the economic burden and the health care systems. Available vaccines are often unsatisfactory and many individuals are reluctant to receive injections. Intranasal immunization is painless, side effect free and may encourage a large number of individuals to participate in the vaccination programs. Ninety-two students were immunized intranasally once or twice, 21 days apart, with a trivalent inactivated whole influenza vaccine during three separate seasons (1996/1997, 1997/1998 and 1998/1999) with the recommended seasonal strains. The vaccine was well tolerated, without adverse effect and morbidity in the vaccinees during the winter season was low. Serum antibody response was determined by the hemagglutination inhibition (HI) test and nasal response by the enzyme-linked immunoadsorbant assay (ELISA). Following the second dose, mucosal antibody response was detected in 48.1-73.3% of immunized subjects. Serum and mucosal antibody levels (GMT) increased significantly to all the strains, with the exception of A/H3N2 in the mucosal response in 1997/1998. At the end of the trial, the percentage of immune subjects was over 93% to A/H1N1 strains, 60-71% to A/H3N2 and 64-66% to B/Harbin in 1996/1997 and 1997/1998, and 75-91% following one dose in 1998/1999. When serum and mucosal responses were combined, a higher percentage of responders was found (60-86%). Repeated vaccination does not seem to interfere with serum or mucosal response. The double barrier of mucosal and serum antibody may inhibit infection and decrease morbidity when infection occurs, thus limiting the spread of influenza in the community.
Databáze: OpenAIRE