A variable cytoplasmic domain segment is necessary for γ-protocadherin trafficking and tubulation in the endosome/lysosome pathway

Autor: Nicole Lou, Hugo H. Hanson, Greg R. Phillips, Robert O'Leary, Semie Kang, James E. Reilly
Jazyk: angličtina
Rok vydání: 2011
Předmět:
Zdroj: Molecular Biology of the Cell
ISSN: 1939-4586
1059-1524
Popis: The variable portion of the γ-protocadherin (Pcdh-γ) cytoplasmic domain (VCD) controls Pcdh-γ trafficking and organelle tubulation in the endolysosome system. Active VCD segments are conserved in Pcdh-γA and Pcdh-γB subfamilies.
Clustered protocadherins (Pcdhs) are arranged in gene clusters (α, β, and γ) with variable and constant exons. Variable exons encode cadherin and transmembrane domains and ∼90 cytoplasmic residues. The 14 Pcdh-αs and 22 Pcdh-γs are spliced to constant exons, which, for Pcdh-γs, encode ∼120 residues of an identical cytoplasmic moiety. Pcdh-γs participate in cell–cell interactions but are prominently intracellular in vivo, and mice with disrupted Pcdh-γ genes exhibit increased neuronal cell death, suggesting nonconventional roles. Most attention in terms of Pcdh-γ intracellular interactions has focused on the constant domain. We show that the variable cytoplasmic domain (VCD) is required for trafficking and organelle tubulation in the endolysosome system. Deletion of the constant cytoplasmic domain preserved the late endosomal/lysosomal trafficking and organelle tubulation observed for the intact molecule, whereas deletion or excision of the VCD or replacement of the Pcdh-γA3 cytoplasmic domain with that from Pcdh-α1 or N-cadherin dramatically altered trafficking. Truncations or internal deletions within the VCD defined a 26–amino acid segment required for trafficking and tubulation in the endolysosomal pathway. This active VCD segment contains residues that are conserved in Pcdh-γA and Pcdh-γB subfamilies. Thus the VCDs of Pcdh-γs mediate interactions critical for Pcdh-γ trafficking.
Databáze: OpenAIRE