The role of circular folds in mixing intensification in the small intestine: A numerical study

Autor: Peng Wu, Xiao Dong Chen, Jinping Zha, Xinjuan Liu, Guillaume Delaplace, Jie Xiao, Jianyu Hao, Didier Dupont, Romain Jeantet, Siyu Zou
Přispěvatelé: Soochow University, Capital University of Medical Sciences [Beijing] (CUMS), Unité Matériaux et Transformations - UMR 8207 (UMET), Centrale Lille-Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Science et Technologie du Lait et de l'Oeuf (STLO), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centrale Lille Institut (CLIL), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-AGROCAMPUS OUEST
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Chemical Engineering Science
Chemical Engineering Science, 2021, 229, pp.116079. ⟨10.1016/j.ces.2020.116079⟩
Chemical Engineering Science, Elsevier, 2021, 229, pp.116079. ⟨10.1016/j.ces.2020.116079⟩
ISSN: 0009-2509
DOI: 10.1016/j.ces.2020.116079⟩
Popis: International audience; The inner wall of the intestine has multiscale structures whose roles, beyond the increase of surface area for absorption, are yet to be discovered. In this study, the mixing process in a human duodenum with circular folds, driven by segmentation contraction, was simulated using a multiphysics model, making it possible to track the evolution of mixing level distributions and enabling quantitative evaluation ofthe structural role of folds in mixing intensification. It was found that, in a laminar flow regime, circular folds intensify both radial and axial mixing by synergistically offering prominent and long-lasting swirls/vortices, high fluid velocity and high shear rates. Tall and slim folds with enlarged segmentation amplitude,frequency and wavelength can enhance mixing. The maximum enhancement ratio can reach 6.18 under the investigated conditions. These findings will also be valuable for the improved design of biomimetic soft-elastic reactors for the chemical and pharmaceutical industries.
Databáze: OpenAIRE