On affine variety codes from the Klein quartic

Autor: Ferruh Özbudak, Olav Geil
Rok vydání: 2018
Předmět:
Zdroj: Geil, H O & Ozbudak, F 2019, ' On affine variety codes from the Klein quartic ', Cryptography and Communications, vol. 11, no. 2, pp. 237-257 . https://doi.org/10.1007/s12095-018-0285-6
ISSN: 1936-2455
1936-2447
DOI: 10.1007/s12095-018-0285-6
Popis: We study a family of primary affine variety codes defined from the Klein quartic. The duals of these codes have previously been treated in Kolluru et al., (Appl. Algebra Engrg. Comm. Comput. 10(6):433–464, 2000, Ex. 3.2). Among the codes that we construct almost all have parameters as good as the best known codes according to Grassl (2007) and in the remaining few cases the parameters are almost as good. To establish the code parameters we apply the footprint bound (Geil and Høholdt, IEEE Trans. Inform. Theory 46(2), 635–641, 2000 and Høholdt 1998) from Gröbner basis theory and for this purpose we develop a new method where we inspired by Buchberger’s algorithm perform a series of symbolic computations.
Databáze: OpenAIRE