Multiplicity of solutions for a class of Neumann elliptic systems in anisotropic Sobolev spaces with variable exponent
Autor: | Ahmed Ahmed, Mohamed Saad Bouh Elemine Vall |
---|---|
Rok vydání: | 2019 |
Předmět: |
weak solution
Algebra and Number Theory Variable exponent Elliptic systems Weak solution Mathematical analysis 35J50 Multiplicity (mathematics) 34A34 Sobolev space 35D30 Variational principle variational principle Boundary value problem gradient system anisotropic variable exponent Sobolev space Anisotropy Neumann elliptic problem Analysis Mathematics |
Zdroj: | Adv. Oper. Theory 4, no. 2 (2019), 497-513 |
ISSN: | 2538-225X |
DOI: | 10.15352/aot.1808-1409 |
Popis: | In this paper, we prove the existence of infinitely many solutions of a system of boundary value problems involving flux boundary conditions in anisotropic variable exponent Sobolev spaces, by applying a critical point variational principle obtained by Ricceri as a consequence of a more general variational principle and the theory of the anisotropic variable exponent Sobolev spaces. |
Databáze: | OpenAIRE |
Externí odkaz: |