Agronomic Linked Data (AgroLD): a Knowledge-based System to Enable Integrative Biology in Agronomy

Autor: Bertrand Pitollat, Imène Chentli, Pierre Larmande, Clement Jonquet, Valentin Guignon, Nordine El Hassouni, Ndomassi Tando, Gildas Tagny, Aravind Venkatesan, Gaëtan Droc, Mathieu Rouard, Manuel Ruiz
Přispěvatelé: Institut de Biologie Computationnelle (IBC), Institut National de la Recherche Agronomique (INRA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Bioversity International [Montpellier], Bioversity International [Rome], Consultative Group on International Agricultural Research [CGIAR] (CGIAR)-Consultative Group on International Agricultural Research [CGIAR] (CGIAR), WEB Architecture x Semantic WEB x WEB of Data (WEB3), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Diversité, adaptation, développement des plantes (UMR DIADE), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud]), Computational Biology Institute of Montpellier : ANR-11-INBS-0013, IA-11-BINF-0002, Institut Francais de Bioinformatique : ANR-11-INBS-0013, IA-11-INBS-0013, Labex Agro : ANR-10LABX-001-01, IA-10-LABX-0001, ANR-11-BINF-0002,IBC,Institut de biologie Computationnelle(2011), Université de Montpellier (UM)-Institut National de la Recherche Agronomique (INRA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), WEB-CUBE, Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Institut de Recherche pour le Développement (IRD [France-Sud])-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Institut National de la Recherche Agronomique (INRA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Proteomics
Agronomie
Computer science
Knowledge Bases
[SDV.SA.AGRO]Life Sciences [q-bio]/Agricultural sciences/Agronomy
Social Sciences
ontologie de domaine
Ontology (information science)
Logiciel
Infographics
Computer Architecture
F30 - Génétique et amélioration des plantes
Database and Informatics Methods
0302 clinical medicine
Phenomics
céréale
Psychology
Ensembl
Génétique
Data Management
Language
2. Zero hunger
0303 health sciences
Gene Ontologies
Agriculture
Genomics
computer.file_format
[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM]
[INFO.INFO-TT]Computer Science [cs]/Document and Text Processing
Knowledge base
C30 - Documentation et information
Information Retrieval
Medicine
Recherche de l'information
Graphs
Functional genomics
Biologie
Genome
Plant

Research Article
Computer and Information Sciences
Science
Crops
Phenome
Research and Analysis Methods
03 medical and health sciences
Ontologies
Genetics
RDF
Semantic Web
030304 developmental biology
[INFO.INFO-DB]Computer Science [cs]/Databases [cs.DB]
business.industry
Data Visualization
[INFO.INFO-WB]Computer Science [cs]/Web
Cognitive Psychology
Biology and Life Sciences
Computational Biology
15. Life on land
Genome Analysis
Data science
Agronomy
[INFO.INFO-IR]Computer Science [cs]/Information Retrieval [cs.IR]
Cognitive Science
[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM]
business
computer
030217 neurology & neurosurgery
User Interfaces
Neuroscience
Crop Science
Cereal Crops
Zdroj: Plos One 11 (13), . (2018)
PLoS ONE
PLoS ONE, 2018, 13 (11), pp.e0198270. ⟨10.1371/journal.pone.0198270⟩
PloS One
PLoS ONE, Vol 13, Iss 11, p e0198270 (2018)
PLoS ONE, Public Library of Science, 2018, 13 (11), pp.e0198270. ⟨10.1371/journal.pone.0198270⟩
ISSN: 1932-6203
DOI: 10.1101/325423
Popis: Exploring the links between genetic and phenotypic traits is an important area of research in agronomy. One of the main objectives of this is to accelerate the development of important traits that can positively impact the agricultural economy. However, due to the existence of complex molecular interactions, to gain complete understanding will warrant data analyses performed at different molecular and environmental levels for a given (plant) subject. For instance, to understand how rice genes involved in metabolism or signaling of growth regulators control the rice panicle architecture. While high-throughput technologies have played a key role in accelerating and generating the much-needed data, these can only partially capture the dynamics in genotypephenotype relations. Consequently, our knowledge of the complex relationships between the different molecular actors responsible for the expression of the phenome in various plant systems remains fragmented. Hence, there is an urgent need to effectively integrate and assimilate complementary information to understand the biological system in its entirety. We have developed AgroLD [1] (www.agrold.org), a knowledge graph system that exploits the Semantic Web technology and FAIR principles [2], to integrate information to integrate data about plant species of high interest for the plant science community e.g., rice, wheat, Arabidopsis and in this way facilitating the formulation of new scientific hypotheses. We present some integration results of the project, which currently focused on genomics, proteomics and phenomics. AgroLD is now an RDF knowledge base of 900M triples created by annotating and integrating more than 100 datasets coming from 15 data sources –such as Ensembl plants [3], Gramene.org [4] and TropGeneDB [5]– with 15 ontologies –such as the Gene Ontology [6] and Plant Ontology [7]. Our objective is to offer a domain specific knowledge platform to solve complex biological and agronomical questions related to the implication of genes in, for instances, plant disease resistance or high yield traits. We expect the resolution of these questions to facilitate the formulation of new scientific hypotheses to be validated with a knowledge-oriented approach.
Databáze: OpenAIRE