Renormalization group theory of molecular dynamics
Autor: | Yuya Matsumura, Daiji Ichishima |
---|---|
Rok vydání: | 2021 |
Předmět: |
Thermal equilibrium
Physics Multidisciplinary 010304 chemical physics Mathematics and computing Science Dissipative particle dynamics Renormalization group 01 natural sciences Article Deborah number Applied physics Renormalization Critical point (thermodynamics) 0103 physical sciences Medicine Statistical physics Statistical physics thermodynamics and nonlinear dynamics 010306 general physics Critical exponent Physical quantity |
Zdroj: | Scientific Reports, Vol 11, Iss 1, Pp 1-13 (2021) Scientific Reports |
ISSN: | 2045-2322 |
Popis: | Large scale computation by molecular dynamics (MD) method is often challenging or even impractical due to its computational cost, in spite of its wide applications in a variety of fields. Although the recent advancement in parallel computing and introduction of coarse-graining methods have enabled large scale calculations, macroscopic analyses are still not realizable. Here, we present renormalized molecular dynamics (RMD), a renormalization group of MD in thermal equilibrium derived by using the Migdal–Kadanoff approximation. The RMD method improves the computational efficiency drastically while retaining the advantage of MD. The computational efficiency is improved by a factor of $$2^{n(D+1)}$$ 2 n ( D + 1 ) over conventional MD where D is the spatial dimension and n is the number of applied renormalization transforms. We verify RMD by conducting two simulations; melting of an aluminum slab and collision of aluminum spheres. Both problems show that the expectation values of physical quantities are in good agreement after the renormalization, whereas the consumption time is reduced as expected. To observe behavior of RMD near the critical point, the critical exponent of the Lennard-Jones potential is extracted by calculating specific heat on the mesoscale. The critical exponent is obtained as $$\nu =0.63\pm 0.01$$ ν = 0.63 ± 0.01 . In addition, the renormalization group of dissipative particle dynamics (DPD) is derived. Renormalized DPD is equivalent to RMD in isothermal systems under the condition such that Deborah number $$De\ll 1$$ D e ≪ 1 . |
Databáze: | OpenAIRE |
Externí odkaz: |