The Crystal Structure of the Ubiquitin-like Domain of Ribosome Assembly Factor Ytm1 and Characterization of Its Interaction with the AAA-ATPase Midasin

Autor: Erin M. Romes, Robin E. Stanley, Mack Sobhany
Rok vydání: 2016
Předmět:
0301 basic medicine
Saccharomyces cerevisiae Proteins
Nucleolus
Molecular Sequence Data
Saccharomyces cerevisiae
Glutamic Acid
Cell Cycle Proteins
Crystallography
X-Ray

Biochemistry
Ribosome
Cell Line
Ribosome assembly
Structure-Activity Relationship
03 medical and health sciences
BOP1
RNA Polymerase I
Preribosomal RNA
Humans
Amino Acid Sequence
Molecular Biology
Adenosine Triphosphatases
Ions
Sequence Homology
Amino Acid

biology
Ubiquitin
Nuclear Proteins
RNA-Binding Proteins
Cell Biology
biology.organism_classification
AAA proteins
Protein Structure
Tertiary

PeBoW complex
HEK293 Cells
030104 developmental biology
Metals
Mutation
Protein Structure and Folding
Biophysics
ATPases Associated with Diverse Cellular Activities
Microtubule-Associated Proteins
Ribosomes
Cell Nucleolus
Protein Binding
Zdroj: Journal of Biological Chemistry. 291:882-893
ISSN: 0021-9258
DOI: 10.1074/jbc.m115.693259
Popis: The synthesis of eukaryotic ribosomes is a complex, energetically demanding process requiring the aid of numerous non-ribosomal factors, such as the PeBoW complex. The mammalian PeBoW complex, composed of Pes1, Bop1, and WDR12, is essential for the processing of the 32S preribosomal RNA. Previous work in Saccharomyces cerevisiae has shown that release of the homologous proteins in this complex (Nop7, Erb1, and Ytm1, respectively) from preribosomal particles requires Rea1 (midasin or MDN1 in humans), a large dynein-like protein. Midasin contains a C-terminal metal ion-dependent adhesion site (MIDAS) domain that interacts with the N-terminal ubiquitin-like (UBL) domain of Ytm1/WDR12 as well as the UBL domain of Rsa4/Nle1 in a later step in the ribosome maturation pathway. Here we present the crystal structure of the UBL domain of the WDR12 homologue from S. cerevisiae at 1.7 Å resolution and demonstrate that human midasin binds to WDR12 as well as Nle1 through their respective UBL domains. Midasin contains a well conserved extension region upstream of the MIDAS domain required for binding WDR12 and Nle1, and the interaction is dependent upon metal ion coordination because removal of the metal or mutation of residues that coordinate the metal ion diminishes the interaction. Mammalian WDR12 displays prominent nucleolar localization that is dependent upon active ribosomal RNA transcription. Based upon these results, we propose that release of the PeBoW complex and subsequent release of Nle1 by midasin is a well conserved step in the ribosome maturation pathway in both yeast and mammalian cells.
Databáze: OpenAIRE